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Abstract. The Green function for the Schrödinger equation with an isotropic, three-dimensional
harmonic-oscillator potential is given in closed form. A similar closed form is obtained when
the Schr̈odinger equation also contains a magnetic interaction and the magnetic field is such that
the precession and oscillation frequencies are equal. The latter Green function is used to obtain
energy and Sturmian eigenvalues that occur in the theory of atom–atom collisions.

1. Introduction

The harmonic oscillator is one of the most widely used model interactions in physics
and is fundamental to many quantum systems. Much is known about the wavefunctions,
eigenvalues and time-dependent propagator for the Schrödinger equation with harmonic-
oscillator potentials. The mathematical apparatus for this model seems complete [1], yet
there is one function that is conspicuously absent, namely, the time-independent, hereafter
called the stationary, Green functionG(r, r′, E). The Green function is known in closed
form only for one dimension. Expressions for the stationary Green function in three
dimensions have only appeared in the literature as sums over partial waves [2]. To the
best of our knowledge, the sums themselves have not yet been evaluated in closed form.
The purpose of this manuscript is to derive closed-form expressions for the Green functions
for the Schr̈odinger equation with an isotropic harmonic-oscillator potential. Atomic units
with e = m = h̄ = 1 are used throughout.

Our interest in the harmonic-oscillator potential derives from its appearance in
the mapping of the time-dependent free-particle Schrödinger equation via a scaling
transformation. In this transformation, the Schrödinger equation is written in a coordinate
system where the lengthscale varies with time [3]. Coordinatesr of particles scale according
to r = qR(t), whereR(t) is a function chosen for its relevance to specific physical
situations. In the situation of interest for our work, this coordinate is the distance between
two positively charged ions following a classical trajectoryR(t) andr is the coordinate of
a negative electron. The scaling transformation has also been applied to a particle in a box
where the walls of the box move with time [5], and to the models where atomic potentials
are replaced by zero-range potentials [6].

In three dimensions the lengthR(t) varies with time and the internuclear axis rotates.
Transformations to rotating frames are standard and are represented by the rotation operator

† Managed by Lockheed Martin Energy Research Corp. under contract no DE-AC05-96OR22464 with the US
Department of Energy.
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exp[i2(t)n·L]. Such transformations introduce a factor i2̇n·L in the Schr̈odinger equation,
while the scale transformation introduces an oscillator potential. Thus the Green function
for the oscillator together with the rotation term is pertinent to physical applications. For
that reason, we consider the Green function for a three-dimensional (3D) oscillator without
and with rotation. In the latter case the spring constant of the oscillator�2 is the square
of the angular frequency� of rotation. ForR(t) = √b2+ v2t2, where b and v are
constants the transformed Schrödinger equation is stationary, i.e.H is time independent.
This transformation of the Schrödinger equation is reviewed in section 3.1.

The Green function is the Laplace transform of the well known propagator
K(r, T ; r′, 0), thus computing the Green function is accomplished by evaluating a Laplace
integral. The propagator and its relation to the Green function is reviewed in section 2.
Computation of a Laplace integral is the main task and is reported in section 2.2. The
Laplace integral is then used to compute the Green function without rotation in section 2.3
and with rotation in section 2.4. A particular case of this latter function, of importance for
zero-range potentials, has the coordinatey ′ equal to zero, and is therefore referred to as the
in-plane Green function. The in-plane Green function is derived in section 2.5 and employed
in section 3 to compute energy and Sturmian eigenvalues for the harmonic oscillator with
two zero-range potentials.

2. Oscillator Green functions in 3D

2.1. General

We begin with the propagator [1] for a 3D oscillator with the frequency�

K(r, T , r′, 0) =
(

�

2π i sin�T

)3/2

exp

(
i�

2 sin�T
[(r2+ r ′2) cos�T − 2r · r′]

)
. (1)

The propagator equation (1) satisfies the Schrödinger equation[
−1

2
∇2
r +

1

2
�2r2

]
K(r, T , r′, 0) = i

∂

∂T
K(r, T , r′, 0) (2)

with the initial condition

K(r, T , r′, 0)
∣∣
T=0 = δ(r − r′). (3)

The Green function is

G(r, r′, E) = lim
η→+0

i
∫ ∞

0
exp[i(E + iη)T ]K(r, T , r′, 0) dT (4)

it satisfies the stationary inhomogenious equation

[− 1
2∇2

r + 1
2�

2r2− E]G(r, r′, E) = δ(r − r′). (5)

The Green function is not completely specified by the Schrödinger equation, since
appropriate boundary conditions must be imposed. One such boundary condition is
that G(r, r′) is regular everywhere except at the singular pointr = r′, in particular
G(r, r′) is regular at the origin. The function also satisfies boundary conditions at infinite
distance. In the absence of the harmonic-oscillator potentialG(r, r′) satisfies outgoing wave
boundary conditions, but because of the attractive harmonic-oscillator potentialG(r, r′) of
equation (5) it is exponentially damped. With the definition (4) the boundary conditions at
infinity are

lim
r→∞

1

rG

∂(rG)

∂r
= −

√
�2r2− 2(E + iη). (6)
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The small imaginary part iη is retained in the equation (6) in order to assure that the Green
function is uniquely specified for� = 0. The uniqueness of solutions of the Schrödinger
equation is needed in order to assure that the expression we obtain by solving equation (5)
is identical to the expression needed to evaluate the Laplace transform in equation (4).

2.2. Evaluation of an integral

From equation (4) it follows that the Green functions are proportional to the integral, which
cannot be found in standard tables such as [7],

FE(α, β) = i
∫ ∞

0
exp(iET )

(
�

2π i sin�T

)3/2

exp

(
i�

2 sin�T
(α cos�T + β)

)
dT . (7)

We present a method to calculate such integrals in this manuscript. Our method employs
the well known expression for the s-wave component of the Green function.

Expanding the Green function over spherical harmonics and projecting onto the s-wave
component gives∫

G(r, r′, E)Y00(r̂
′) dr̂′ = 1√

4π

gE(r>)fE(r<)

r ′2
2 W(gE(r

′), fE(r ′))
(8)

whereW(gE(r ′), fE(r ′)) is the Wronskian of the functionsgE andfE . The function on the
right-hand side of equation (8) is a solution of the equation[
−1

2

(
d2

dr2
+ 2

r

d

dr
−�2r2

)
− E

]
gE(r>)fE(r<)

r ′2
2 W(gE(r

′), fE(r ′))
= 1

r2
δ(r − r ′) (9)

with appropriate boundary conditions.
The functionsf andg are given explicitly by

gE(r) = exp(−�r2/2)U

(
3

4
− E

2�
,

3

2
, �r2

)
(10)

fE(r) = exp(−�r2/2)M

(
3

4
− E

2�
,

3

2
, �r2

)
(11)

whereM andU are confluent hypergeometric functions [8]. The Wronskian is calculated
directly, and we find

1
r ′2
2 W(gE(r

′), fE(r ′))
= 2

√
�

π
0

(
3

4
− E

2�

)
. (12)

Equation (8) together with equation (12) is a closed-form expression for the s-wave Green
function. It is also a closed-form expression for the Laplace transform of the spherical
average of the propagator. Because the mathematical expression for the spherical average
of the propagator is similar to that for the propagator itself, the s-wave Green function,
with appropriate variables, can be used to write a closed-form expression for the 3D Green
functionG(r, r′). We first compute the s-wave Green function directly from the definition
equation (4) to obtain equation (16) below. This result is then used to calculate the general
integralFE(α, β) of equation (7) and the various 3D Green functions of sections 2.3–2.5.

The propagator equation (1) has the following form

K(r, T , r′, 0) =
(

�

2π i sin�T

)3/2

exp

(
i�

2 sin�T
[A cos�T − Bµ]

)
(13)
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whereA = r2+ r ′2, B = 2rr ′, andµ = r̂ · r̂′. In addition we need the inverse relations

2r2
> = A+

√
A2− B2 (14)

2r2
< = A−

√
A2− B2. (15)

Substituting equations (4) and (13) into equation (8), and performing the integration over
µ one obtains

i
∫ ∞

0
exp(iET )

(
�

2π i sin�T

)3/2 2 sin�T

i�

×
[
exp

(
i�

2 sin�T
[A cos�T + B]

)
− exp

(
i�

2 sin�T
[A cos�T − B]

)]
dT

= 2B3(�,E)gE(r>)fE(r<) (16)

where

3(�,E) = 1

2πr ′2W(gE(r ′), fE(r ′))
≡ 1

2�

(
�

π

) 3
2

0

(
3

4
− E

2�

)
. (17)

Forming the partial derivative of equation (16) with respect toB and taking into account
definition ofFE(α, β) equation (7) gives our first relation

FE(A,B)+ FE(A,−B) = 23(�,E)
∂

∂B
[BgE(r>)fE(r<)]. (18)

Alternatively we can use

exp(iEt) sin�t = 1

2i
{exp[i(E +�)t ] − exp[−i(E −�)t ]} (19)

in equation (16) to write a second equation

FE+�(A,B)− FE−�(A,B)− [FE+�(A,−B)− FE−�(A,−B)]
= − 2�3(�,E)BgE(r>)fE(r<). (20)

In a similar fashion we can take the derivative of equation (16) with respect toA and use

exp(iEt) cos�t = 1
2{exp[i(E +�)t ] + exp[−i(E −�)t ]} (21)

to obtain a third independent equation

FE+�(A,B)+ FE−�(A,B)− [FE+�(A,−B)+ FE−�(A,−B)]
= 43(�,E)B

∂

∂A
[gE(r>)fE(r<)]. (22)

Adding equations (20) and (22), and changingE→ E −� gives

FE(A,B)− FE(A,−B) = 23(�,E −�)
×B

(
∂

∂A
[gE−�(r>)fE−�(r<)] − �

2
gE−�(r>)fE−�(r<)

)
(23)

and the desired result is obtained by adding equations (18) and (23)

FE(A,B) = 3(�,E)
(
∂

∂B
[BgE(r>)fE(r<)]

)
+3(�,E −�)B

(
∂

∂A
[gE−�(r>)fE−�(r<)] − �

2
gE−�(r>)fE−�(r<)

)
.

(24)
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Instead of summing equations (20) and (22), we can subtract them and changeE→ E+�,
to obtain the alternative form

FE(A,B) = 3(�,E)
(
∂

∂B
[BgE(r>)fE(r<)]

)
+3(�,E +�)B

(
∂

∂A
[gE+�(r>)fE+�(r<)] + �

2
gE+�(r>)fE+�(r<)

)
.

(25)

Equations (24) and (25) are the main results of this section. They provide closed form
expressions for the Laplace integral of equation (7) with arbitrary values of the parameters
α andβ.

2.3. 3D Green functions without rotation

By inspection of the propagator equation (1) it is easy to see that the Green function is
obtained from equation (25) when the parametersα andβ are chosen according to

α = r2+ r ′2 (26)

β = −2r · r′. (27)

It is convenient to introduce a new pair of variables†

ξ = �

2
(r2+ r ′2+ |r − r′||r + r′|), (28)

η = �

2
(r2+ r ′2− |r − r′||r + r′|) (29)

which are connected withα andβ as follows

α = 1

�
(ξ + η) (30)

β = −sign(r · r′) 2

�

√
ξη. (31)

Transforming equation (25) to new variables(ξ, η), gives the Green function

G(r, r′, E) = exp

(
−ξ + η

2

){
3(�,E)

(
1+ 2ξη

ξ − η
[
∂

∂η
− ∂

∂ξ

])
UE(ξ)ME(η)

+ sign(r · r′)3(�,E +�)2
√
ξη

ξ − η
[
η
∂

∂η
− ξ ∂

∂ξ

]
UE+�(ξ)ME+�(η)

}
(32)

where3(�,E) is given by equation (17), and

UE(ξ) = U
(

3

4
− E

2�
,

3

2
, ξ

)
(33)

ME(η) = M
(

3

4
− E

2�
,

3

2
, η

)
. (34)

Equation (32) is the desired closed-form expression for the 3D Green function. Using
equations (28) and (29) it is straightforward to show that the Green function equation (32)
has the required singularity whenr→ r′, i.e.

G(r, r′, E) ∼ 1

2π |r − r′| whenr→ r′. (35)

† Variablesξ andη correspond tor2
> andr2

< given by equations (14) and (15).
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Using theN -dimensional propagator for harmonic oscillator

K(r, T , r′, 0) =
(

�

2π i sin�T

)N/2
exp

(
i�

2 sin�T
[(r2+ r ′2) cos�T − 2r · r′]

)
(36)

equation (4) for the Green function, and closed form in 3D equation (32) it is possible to
obtain closed forms for harmonic oscillator Green functions with arbitraryodd number of
dimensions. Introducingµ = r̂ · r̂′, and denoting the dimensionality by a superscript, we
obtain

G(2N+3)(r, r ′, µ) = 1

(2πrr ′)N
∂N

∂µN
G(3)(r, r ′, µ) (37)

whereG(3)(r, r ′, µ) is given by equation (32) with(2N + 3)-dimensional vectorsr andr′.
The importance of the closed forms for Green functions in atomic physics stems from

the possibility to take into account exactly all partial waves in the problem. It is relatively
easy to write partial-wave expansions for Green functions, but their usefulness is limited
to the cases where only several partial waves are important. There are very few nontrivial
examples of 3D Green functions known in closed forms. One of them is the Coulomb
Green function derived in closed form by Hostler and Pratt [9]. The Coulomb Green
function found many applications in atomic physics; to mention a few: in calculating
dynamic polarizabilities of alkali-metal atoms [10], or in the theory of ion-pair formation
in Rydberg atom collisions [11].

We believe that the harmonic-oscillator Green function given by equation (32) will prove
to be equally useful, since the harmonic oscillator is one of the most wide-spread model
potentials in modern physics. In section 3 we give an application of the harmonic-oscillator
Green function in ion–atom collisions. An additional oscillator potential appears in the
Schr̈odinger equation when one constructs explicitly Galilean-invariant theory according to
Solov’ev [3]. However, the Solov’ev’s Galilean-invariant theory requires taking account
of the internuclear axis rotation. In the next two sections we derive closed forms for the
oscillator Green functions in the coordinate systems rotating with the frequency of the
oscillator.

The final remark is in order here to avoid possible confusion. Even though we use the
well known s-wave component of the oscillator Green function to evaluate the integral in
equation (7), it does not mean that our final result equation (32) is limited to the s-wave. In
fact equation (32) is exact and contains all partial waves, as can be seen from the limiting
case equation (35), for example. This remark pertains to all Green functions derived in this
paper.

2.4. 3D Green functions with rotation

In the theory of atom–atom collisions (see section 3 below) one deals with the oscillator in
a reference frame rotating with the fundamental frequency of the oscillator. In this section
we derive a Green function for this case.

The propagator with rotation is simply

Krot(r, T , r
′, 0) = exp(i�T L̂y)K(r, T , r

′, 0) (38)

whereL̂y is the projection of the angular momentum operator on the axis of rotation (chosen
to be they-axis here). Using the explicit form equation (1) and performing the indicated
transformation to the rotating frame gives

Krot(r, T , r
′, 0) =

(
�

2π i sin�T

)3/2

exp[−i�(z′x − x ′z)]
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× exp

(
i�

2 sin�T
[(r2+ r ′2− 2(xx ′ + zz′)) cos�T − 2yy ′]

)
. (39)

The propagator with rotation satisfies the differential equation

[− 1
2∇2

r + 1
2�

2r2+�L̂y ]Krot(r, T , r
′, 0) = i

∂

∂T
Krot(r, T , r

′, 0) (40)

with the same initial condition as the propagator without rotation (see equation (3)). The
Green function is given by equation (4) and satisfies the equation

[− 1
2∇2

r + 1
2�

2r2+�L̂y − E]Grot(r, r
′, E) = δ(r − r′). (41)

The Green function is proportional to the integral in equation (7), but with different
parametersα andβ. Introducing new variables

ξr = �

2
(|r − r′|2+ 2yy ′ + |r − r′||r − r′xz|) (42)

ηr = �

2
(|r − r′|2+ 2yy ′ − |r − r′||r − r′xz|) (43)

wherer′xz = (x ′,−y ′, z′) (the reflection ofr′ in the xz-plane), we can write the Green
function with rotation in the form similar to equation (32)

Grot(r, r
′, E) = exp[−i�(z′x − x ′z)] exp

(
−ξr + ηr

2

)
(44)

×
{
3(�,E)

(
1+ 2ξrηr

ξr − ηr

[
∂

∂ηr
− ∂

∂ξr

])
UE(ξr)ME(ηr)

+ sign(yy ′)3(�,E +�)2
√
ξrηr

ξr − ηr

[
ηr

∂

∂ηr
− ξr ∂

∂ξr

]
UE+�(ξr)ME+�(ηr)

}
(45)

where functionsUE andME are defined above by equations (33) and (34).

2.5. In-plane 3D Green functions with rotation

In atom–atom collisions to a very good approximation the nuclei move in the plane
perpendicular to the total angular momentum. Therefore, the in-plane Green function is
important for applications. It is obtained from the general formula equation (45) by taking
the limit y ′ → 0, which in terms ofξr andηr corresponds to

ξr → �|r − r′|2 and ηr → 0. (46)

The in-plane Green function then takes a very concise form

G
y ′=0
rot (r, r

′, E) = exp(i[r′ ×Ω] · r)
2π |r − r′|

U
(
−E
�
,
√

2�|r − r′|
)

U
(−E

�
, 0
) (47)

whereU(a, x) is a parabolic cylinder function defined in [8].
This simple result can also be obtained by other means. First of all, wheny ′ = 0, one

can perform the integration directly [7] in equation (4) without using equation (25). Second,
the equation for the Green function equation (41) can be solved by introducing two new
variables

ρ = |r − r′| (48)

σ = �

|r − r′| (x
′z− z′x) (49)
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and separating them in a way similar to one employed by Hostler and Pratt [9] to find the
Coulomb Green function. It is reassuring that three different methods give the same result
equation (47) for the in-plane Green function with rotation.

In atomic collision applications (section 3) we will need the regularized Green function
defined by

Gr(r, r, E) = Gy ′=0
rot (r, r

′, E)− 1

2π |r − r′| . (50)

It is easy to find the explicit expression for the limit of the regularized in-plane Green
function asr′ → r:

Gr(E) = lim
r′→r

Gr(r, r, E) =
√

2�

2π

U ′(−E
�
, 0)

U(−E
�
, 0)

. (51)

In this caseGr(E) does not depend on coordinates, therefore we omit reference tor in
equation (51).

Finally, it should be noted that Green functions with rotation have slightly different
symmetry with respect to permutation ofr andr′:

Grot(r, r
′) = G∗rot(r

′, r). (52)

Green functions with rotation are complex conjugated under permutations ofr and r′,
whereas ordinary Green functions do not change at all.

3. Oscillator Green functions in atomic collision theory

3.1. Solov’ev–Vinitsky transformation

Consider an atomic collision with two nuclei moving along a classical trajectoryR(t) with
the initial velocity v and impact parameterb (figure 1), and one electron described by a
time-dependent Schrödinger equation[

−1

2
∇2
r + V (r,R(t))

]
ψ(r, t) = i

∂ψ(r, t)

∂t
. (53)

The Solov’ev–Vinitsky transformation [3] of the above equation involves the change of
variables

q = r

R(t)
(54)

τ =
∫ t

−∞

dt ′

R2(t ′)
(55)

Figure 1. Collision scheme.
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and the transformation of the wavefunction

ψ(r, t) = 1

R
3
2 (τ )

exp

(
iṘ(τ )

2R(τ)
q2

)
ϕ(q, τ ) whereR2(τ ) = dt

dτ
. (56)

In a refrence frame that rotates with frequency� we obtain a new Schrödinger equation

[− 1
2∇2

q + 1
2�

2q2+�L̂y + R2(τ )V (q, R(τ))]ϕ(q, τ ) = i
∂ϕ(q, τ )

∂τ
. (57)

A thorough introduction to the Solov’ev–Vinitsky transformation in ion–atom collisions
can be found elsewhere [4]. Such an introduction is rather beyond the scope of this paper, but
several remarkable features of the Solov’ev–Vinitsky transformation should be mentioned
here.

(1) In the original physical coordinates{r, t} the nuclei move along a trajectoryR(t),
therefore the interaction between the electron and the nuclei depends on the direction of
the vectorR(t). In the Solov’ev-Vinitsky space{q, τ }, the nuclei no longer move either in
a radial or in an angular sense; they are fixed at the distance of 1 au from each other on
the qz-axis. Consequently, the potential in the transformed coordinates no longer depends
on the direction ofR(t). The dynamical effects are described by the scalar functionR(τ)

and two additional terms in the new Hamiltonian: a simple harmonic-oscillator term and
an angular-momentum operator. The fact that nuclei do not move in the new representation
leads to the following very important property.

(2) If v is the relative velocity of the collision,b, impact parameter, andvt � b, then
functionsϕ(q, τ ) are Galilean invariant under translations in the plane ofv andR, therefore
there is no need for translation factors, i.e. phase factors that are required to writeψ(r, t)
in frames moving relative to a particular reference frame.

(3) For straight-line trajectories the frequency� does not depend onτ , and
(4) for Coulomb potentials one has effectivelyR2(τ )V (q, R(τ)) = R(τ)V (q) so that, in

some cases, all dependence onτ in equation (57) comes from the factorR(τ)multiplying the
potential. A similar statement can be made for zero-range potentials (ZRP): the parameter of
a ZRP is changed according toα→ αR(τ) in scaled coordinatesq = r/R(t) (equations (58)
and (59) below) and, in some cases, all dependence onτ comes from the multiplicative
factorR(τ) in the boundary conditions.

The last property simplifies the Schrödinger equation and suggests the use of Sturmian
eigenfunctions where the coefficient ofV (q) is an eigenvalue. The Galilean invariance of
ϕ(q, τ ) means that basis functions do not have to be modified in anad hocway by attaching
the translation factors, and that they are therefore orthogonal.

3.2. Adiabatic and Sturmian solutions for zero-range potentials

A ZRP with an eigenenergyεα = −α2/2 is equivalent toV = 0 in equation (53) and the
following boundary condition [6]

ψ(r, t)|rj→0 = Nψ(t)
(

1

rj
− α

)
(58)

where rj = |r − rj0|, and rj0 is the ZRP’s position. Systems of several ZRPs can be
considered, and we attach an additional indexj to distinguish between positions of different
ZRPs. A coefficientNψ(t) in (58) might depend ont , but not onr.

In scaled coordinatesq = r/R(t), boundary conditions equation (58) become

ϕ(q, τ )|qj→0 = Nϕ(τ)
(

1

qj
− αR(τ)

)
(59)
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whereNϕ(τ) does not depend onq.
To solve the time-dependent problem equation (57) one can expand the solution over

adiabatic or Sturmian functions. In the next section, both basis sets for ZRPs are found
in closed form in terms of the oscillator Green functions with rotation. For simplicity we
consider two identical ZRPs.

3.2.1. Adiabatic basis for two ZRPs.The adiabatic functions8n(q;R) (R is a parameter)
satisfy the equation

[− 1
2∇2

q + 1
2�

2q2+�L̂y ]8n(q;R) = En(R)8n(q;R) (60)

with the boundary conditions

8n(q;R)|q±→0 = constant×
(

1

q±
− αR

)
q± = |q ∓ R̂/2| (61)

and

lim
q→∞

1

q8n(q;R)
∂(q8n(q;R))

∂q
= −

√
�2q2− 2(En(R)+ iη). (62)

Since we work in scaled coordinates, the two ZRPs are located at±R̂/2 and the distance
between them is unity. For simplicity of notation, we have introduced the eigenvalueEn(R)

of the scaled equation which relates to the usual adiabatic eigenvalueεn(R) according to
En(R) = εn(R)R2.

To find closed forms for the adiabatic states, we write the wave functions8n in the
form

8n(q;R) = aGy ′=0
rot (q, R̂/2, E

±
n (R))+ bGy ′=0

rot (q,−R̂/2, E±n (R)). (63)

The functions (63) satisfy equation (60), and have correct singularities at ZRP positions
q = ±R̂/2. The boundary condition equation (62) is satisfied by virtue of the boundary
condition equation (6) on the Green function. The coefficientsa and b in equation (63)
should be chosen so that the boundary conditions equation (61) are satisfied. Substituting
equation (63) into equation (61) one obtains homogeneous algebraic equations with respect
to a andb. Adiabatic energy values are defined by the requirement that these equations are
self-consistent. The equation for the adiabatic energiesEn(R) is then

Gr(E)±
√
G
y ′=0
rot (R̂/2,−R/2, E)Gy ′=0

rot (−R̂/2,R/2, E) = −
αR

2π
(64)

whereGr(E) is the regularized Green function defined by equation (50).
Assuming that self-consistency condition equation (64) is satisfied, we find explicit

expressions for adiabatic wavefunctions:

8±n (q;R) = N±a (Gy ′=0
rot (q, R̂/2, E

±
n (R))±Gy ′=0

rot (q,−R̂/2, E±n (R))) (65)

whereN±a is a constant, andGy ′=0
rot is given by equation (47).

The eigenvalue equation generally has an infinite number of solutions, giving an infinite
set of adiabatic eigenfunctions. Using equations (47), (51) and (64) one easily finds that
these functions have the proper behaviour near the ZRPs;

8±n (q;R)|q→±R̂/2 =
N±a
2π

[
1

|q ∓ R̂/2|
− αR

]
(66)

which is equivalent to equation (61). The constantsN±a for the adiabatic functions are
defined by the usual normalization condition

〈8±n (R)|8±n (R)〉 = 1. (67)
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Figure 2. Sturmian eigenvalues for two ZRPs plus oscillator in a rotating reference frame
calculated by equation (71). The frequency of the oscillator and of the rotation is� = 1.
The ZRP parameters areα = 1, EZRP = −α2/2. Poles of the eigenvaluesω0, ω1, ω2 . . .,
are discussed in the text. Full curves, symmetric Sturmian eigenvalues; broken curves,
antisymmetric ones.

3.2.2. Sturmian basis for two ZRPs.The Sturmian functionsS(q;ω), where ω is a
parameter, satisfy the equation

[− 1
2∇2

q + 1
2�

2q2+�L̂y ]S(q;ω) = ωS(q;ω) (68)

with the boundary conditions

S(q;ω)|q±→0 = constant×
(

1

q±
− αρ(ω)

)
(69)

and

lim
q→∞

1

qS(q;ω)
∂(qS(q;ω))

∂q
= −

√
�2q2− 2(ω + iη) (70)

where ρ(ω) is the Sturmian eigenvalue. The eigenvalues can be readily found from
equation (64) by making substitutionsR→ ρ(ω) andEn(R)→ ω:

ρ±(ω) = − 1

α

±U(−ω/�,√2�)+√2�U ′(−ω/�, 0)

U(−ω/�, 0)
. (71)

In contrast to the adiabatic case, there is only one Sturmian eigenvalueρ±(ω) for each
symmetry. It follows that the Sturmian set for ZRPs is not complete, yet it is possible
to write the exact solution of the time-dependent equation in terms of the two Sturmian
functions. The solution of the time-dependent equation is beyond the scope of this report,
thus we will not demonstrate how exact solutions are written in terms of the Sturmian
functions.

The Sturmian functions are written in closed form, similar to the adiabatic case

S±(q;ω) = N±s (Gy ′=0
rot (q, R̂/2, ω)±Gy ′=0

rot (q,−R̂/2, ω)) (72)

whereN±s are some constants, andGy ′=0
rot is given by equation (47).
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Figure 3. Moduli of the Sturmian functions given by equation (72) in the equatorial plane
(z = 0) as functions ofx andy. (a)–(c) show symmetric Sturmians forω = −0.11, 5.11, 11.11
respectively. (d)–(f ) show antisymmetric Sturmians for the same values ofω.
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Figure 3. (Continued)



2866 D B Khrebtukov and J H Macek

Figure 3. (Continued)
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The Sturmians are better suited for solving the time-dependent problem equation (57)
than the adiabatic functions, but, again, such solutions are beyond the scope of this
manuscript. However, it is appropriate to consider properties of the Sturmians themselves
(equation (72)), since they are not so commonly used in atomic physics as adiabatic functions
equation (65).

First of all, it should be noted that there are only two Sturmian functions for this physical
system: symmetric and antisymmetric. This should be compared with the adiabatic case
where equation (64) has infinitely many solutions, thus generating infinitely many adiabatic
functions. The symmetric and antisymmetric Sturmian eigenvalues equation (71) are plotted
in figure 2 as functions ofω. One can see immediately that these eigenvalues have infinitely
many poles. To understand the physical meaning of these poles, let us turn to figure 3, where
moduli of the Sturmians equation (72) are plotted in the equatorial plane (z = 0) as functions
of x andy for different values ofω. Note that forω < ω0, whereω0 is the first pole ofρ±(ω)
equation (71), the symmetric Sturmian has no nodes, and the antisymmetric one has only
one node (figures 3(a) and (d)). This topology of the Sturmian functions remains the same
for all ω < ω0. The topology changes, namely, another node is added, whenω0 < ω < ω1,
whereω1 is the next pole ofρ±(ω). Again, this new topology does not change untilω
becomes greater thanω1. In general, every timeω increases and crosses a pole ofρ±(ω)
another node appears in the Sturmian functions. This situation is illustrated in figures 3(b)
and (e), where the symmetric Sturmian exhibits two nodes, and the antisymmetric one has
three nodes atω = 5.11.

The spatial extent of the Sturmian functions increases asω becomes large and positive.
Compare figures 3(a) and (d) at ω = −0.11 with figures 3(c) and (f ) at ω = 11.11. It can
be seen that atω = −0.11 the distribution is contained completely within a 2× 2 square
in the xy-plane, while atω = 11.11 it does not quite fit into a 4× 4 square in the same
coordinates. The spatial extent of the Sturmian functions becomes infinite asω → +∞.
Thus, a single Sturmian function describes well both bound states and the continuum of
the system. This property makes Sturmians especially useful for description of various
ionization processes.

4. Conclusions

In this work we have derived analytic formulae for mathematical objects that are widely
applicable in modern physics, namely nonrelativistic Green function for isotropic harmonic
oscillators. Green functions in closed form often allow us to find exact analytical solutions to
many nontrivial 3D problems of quantum mechanics. When exact solutions are not possible,
closed forms for Green functions can be employed to build effective approximations with all
partial waves taken into account explicitly. These properties make closed forms for Green
functions very valuable in quantum physics. Unfortunately, very few 3D Green functions
are known in closed forms: free particle, Coulomb field and electric field. We believe that
our derivation of the harmonic-oscillator Green functions makes an important addition to
that short list.

Our particular motivation was to find a suitable basis to solve time-dependent collisional
problems. The requirement of Galilean invariance of the basis, insured in the Solov’ev–
Vinitsky representation, leads to harmonic-oscillator potentials in the Schrödinger equation.
Closed-form expressions for the adiabatic and Sturmian functions in 3D greatly simplifies
the analysis of this equation. Such closed-form expressions have been obtained here using
our expressions for the harmonic-oscillator Green function.
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